
Polymer chains in confined geometries: Massive field theory approach

D. Romeis
Leibniz Institute for Polymer Research Dresden eV, 01069 Dresden, Germany

Z. Usatenko
Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 79011 Lviv, Ukraine

�Received 27 April 2009; published 7 October 2009�

The massive field theory approach in fixed space dimensions d�4 is applied to investigate a dilute solution
of long-flexible polymer chains in a good solvent between two parallel repulsive walls, two inert walls, and for
the mixed case of one inert and one repulsive wall. The well-known correspondence between the field theo-
retical �4 O�n�-vector model in the limit n→0 and the behavior of long-flexible polymer chains in a good
solvent is used to calculate the depletion interaction potential and the depletion force up to one-loop order. In
order to make the theory UV finite in renormalization-group sense in 3�d�4 dimensions we performed the
standard mass renormalization and additional surface-enhancement constants renormalization. Besides, our
investigations include modification of renormalization scheme for the case of two inert walls. The obtained
results confirm that the depletion interaction potential and the resulting depletion force between two repulsive
walls are weaker for chains with excluded volume interaction �EVI� than for ideal chains because the EVI
effectively reduces the depletion effect near the walls. Our results are in qualitative agreement with previous
theoretical investigations, experimental results, and with the results of Monte Carlo simulations.
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I. INTRODUCTION

Solutions of long flexible polymer chains in confined ge-
ometries such as thin films, porous media, or mesoscopic
particles dissolved in the solution have been extensively
studied in recent years, including experimental, numerical,
and theoretical investigations. These investigations showed
that polymer solutions and binary liquid mixture in confined
geometries give rise to new phenomena not observed in bulk.
In general, macroscopic bodies immersed in a medium fre-
quently feel long-range forces originating from fluctuations
in the medium. Such fluctuation-induced forces are omni-
present in nature. For example, such forces arise as a result
of the confinement of quantum fluctuations of the electro-
magnetic field between two metallic conducting plates and
due to the well-known quantum-electrodynamic Casimir ef-
fect �1�. The confinement of thermal fluctuations of the order
parameter at critical points in a binary liquid mixture leads to
effective long-range forces between the confining walls or
particles immersed in fluid as it was predicted by Fisher and
de Gennes �2�. They are commonly known as critical �or
thermodynamic� Casimir forces. Such thermodynamic Ca-
simir forces were recently verified experimentally by their
direct observation in binary fluid mixtures �3�. In polymer
solutions, the reason for these forces originates from the
presence of depletion zones near the confining walls or me-
soscopic particles due to an additional amount of entropic
energy for polymers confined within the slit or between col-
loidal particles. For entropic reasons, the polymer chains
avoid the space between the walls or two close particles. It
leads to an unbalanced pressure the outside which pushes the
two walls or two colloidal particles towards each other. The
improvement of the experimental technique recently allowed
even to measure with high accuracy the depletion force be-
tween a wall and a single colloidal particle �3–6�. It should
be mentioned that the case of two parallel walls gives the

possibility, via the Derjaguin approximation �7�, to describe
the case of a big colloidal spherical particle near the wall
when the radius of particle R is larger than the radius of
gyration Rg and exceeds the distance between the particle
and the wall L.

During a long period the interaction between polymers
and colloidal particles has been modeled by approximating
the polymer chains as hard spheres �8,9�. But such an ap-
proach does not make it possible to correctly describe the
behavior of small colloidal particles in polymer solution and
in the case of colloidal particles of big size the difference
between theoretical predictions and experimental data is big-
ger than 10%. In accordance with this, the approaches which
take into account the chain flexibility were more effective.
For example, in the case of strongly overlapping polymer
chains �semidilute solutions�, the chain flexibility was taken
into account via the phenomenological scaling theory �10,11�
or the self-consistent field theory �12�. In the case of dilute
polymer solution, different polymer chains do not overlap
and the behavior of such polymer solution can be described
by a single polymer chain using the model of random walk
�RW� �for the ideal chain at �-solvent� or self-avoiding walk
�for the real polymer chain with excluded volume interac-
tion�. The latter case corresponds to the situation when the
solvent temperature is above the �-point �good solvent� and
the polymer coils are less compact than in the case of ideal
chains. A remarkable progress in the investigation of this
task was achieved by �13,14� via using a dimensionally regu-
larized continuum version of the field theory with minimal
subtraction of poles in �=4−d, where d is dimensionality of
space. But, as it is easy to see �14�, still there are a lot of
unsolved problems and the question arises: “how to find a
theory which allows us to explain experimental data in a
better way?” One of the methods, which up to our knowl-
edge has not yet been applied to this task, is the massive field
theory approach. This method, as it was shown in the case of
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infinite �15,16�, semi-infinite �17� systems, and specially in
the case of dilute polymer solutions in semi-infinite geom-
etry �18� gives better agreement with the experimental data
and the results of Monte Carlo �MC� calculations. In accor-
dance with this, the purpose of the present work is to apply
the massive field theory approach in fixed space dimension
d=3 for the investigation of dilute polymer solution within
the slit of two parallel walls being in equilibrium contact
with an equivalent polymer solution in a reservoir outside the
slit and to calculate the depletion interaction potentials and
the depletion forces which arise in a system.

The most remarkable properties of fluctuation-induced
forces is their universality. They are independent of most
microscopic details and depend only on a few macroscopic
properties such as the adsorption properties of the confining
walls or the shape of the particles. In accordance with this,
we used different combinations of confining walls, i.e., we
performed calculations for the case of two repulsive walls,
two inert walls, and a mixed case of one repulsive and one
inert wall. Besides, taking into account the Derjaguin ap-
proximation �7� we obtained results for colloidal particles of
big radius near the wall and compared the obtained results
with the experimental data �5�. In the case of two repulsive
walls we found good agreement of our results with the re-
sults of Monte Carlo simulations �19,20�.

II. MODEL

We shall assume that the solution of polymer chains is
sufficiently dilute so that the interchain interactions and the
overlapping between different chains can be neglected, and it
is sufficient to consider the configurations of a single chain.
Long flexible polymer chains in a good solvent are perfectly
described by the model of self-avoiding walks �SAWs� on a
regular lattice �21,22�. Taking into account the polymer-
magnet analogy developed by �23�, their scaling properties in
the limit of an infinite number of steps N may be derived by
a formal n→0 limit of the field theoretical �4 O�n�-vector
model at its critical point. The average square end-to-end
distance, the number of configurations with one end fixed
and with both ends fixed at the distance x=��x�A−x�B�2 exhibit
the following asymptotic behavior in the limit N→�:

�R2� � N2�, ZN � qNN�−1, ZN�x� � qNN−�2−	�,

�2.1�

respectively. �, �, and 	 are the universal correlation length,
susceptibility, and specific heat critical exponents for the
O�n� vector model in the limit n→0, d is the space dimen-
sionality, and q is a nonuniversal fugacity. 1 /N plays the role
of a critical parameter analogous to the reduced critical tem-
perature in magnetic systems.

In the case when the polymer solution is in contact with a
solid substrate, the monomers interact with the surface. At
temperatures, T�Ta, the attraction between the monomers
and the surface leads to a critical adsorbed state, where a
finite fraction of the monomers is attached to the wall and
form d−1 dimensional structure. The deviation from the ad-
sorption threshold �c
 �T−Ta� /Ta� changes sign at the tran-

sition between the adsorbed �the so-called normal transition,
c�0� and the nonadsorbed state �ordinary transition, c�0�,
and it plays the role of a second critical parameter. The value
c corresponds to the adsorption energy divided by kBT �or the
surface-enhancement constant in field theoretical treatment�.
It should be mentioned that for the sake of convenience we
prefer to use the field theoretical terminology for constant c
throughout the whole of the paper. The adsorption threshold
for long-flexible infinite polymer chains, where 1 /N→0 and
c→0 is a multicritical phenomenon.

The aim of the present investigations is to describe the
behavior of such dilute solution of long-flexible polymer
chains within the slit of two parallel walls which is in equi-
librium contact with an equivalent polymer solution in a res-
ervoir outside the slit. The walls are located at the distance L
one from another in z direction such that the surface of the
bottom wall is located at z=0 and the surface of the upper
wall is located at z=L. Each of the two surfaces of the sys-
tem is characterized by a certain surface-enhancement con-
stant ci, where i=1,2. The effective Landau-Ginzburg
Hamiltonian describing the system of dilute polymer solution
confined to the slit is

H	��� � =
 dd−1r

0

L

dz�1

2
���� �2 +

1

2
�0

2�� 2 +
1

4!
v0��� 2�2�

+
c10

2

 dd−1r�� 2�r,z = 0� +

c20

2

 dd−1r�� 2�r,z = L� ,

�2.2�

where �� �x� is an n-vector field with the components �i�x�,
i=1, . . . ,n and x= �r ,z�, �0 is the “bare mass,” and v0 is the
bare coupling constant which characterizes the strength of
the excluded volume interaction �EVI�. The surfaces intro-
duce an anisotropy into the problem, and the directions par-
allel and perpendicular to the surfaces are no longer equiva-
lent. In accordance with the fact that we have to deal with slit
geometry �x= �r ,0�z�L��, only parallel to surfaces Fourier
transforms in d−1 dimensions take place. The interaction
between the polymer chain and the walls is implemented by
the different boundary conditions. As it was mentioned
above, we consider the case of two repulsive walls, where
the fields �� �r ,z� satisfy Dirichlet-Dirichlet boundary condi-
tions

c1 → + �, c2 → + � or �� �r,0� = �� �r,L� = 0,

�2.3�

two inert walls �Neumann-Neumann boundary conditions�

c1 = 0, c2 = 0 or  ��� �r,z�
�z


z=0

=  ��� �r,z�
�z


z=L

= 0,

�2.4�

and the mixed case of one repulsive and one inert wall
�Dirichlet-Neumann boundary conditions�
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c1 → + �, c2 = 0 or �� �r,0� = 0,  ��� �r,z�
�z


z=L

= 0.

�2.5�

The requirement in Eq. �2.4� describing the inert character of
the walls corresponds to the fixed point of the so-called spe-
cial transition �17,24,25� in the field theoretical treatment.

In the present case, the only relevant lengths are the av-
erage end-to-end distance R=��R2��N� and the length
L—the distance between two walls. The properties of the
system depend on the ratio L /R. It should be mentioned that
the present field-theoretical approach is not able to describe
the dimensional crossover from d to d−1-dimensional sys-
tems which arises for L�R. In this case the system is char-
acterized by another critical temperature �see, for example,
on the situation in magnetic or liquid thin films� and moves
to a new critical fixed point.

Thus the present theory is valid for the case L�R. Nev-
ertheless, we made some assumptions, which allowed us to
describe the region L�R.

The well-known arguments of the polymer-magnet anal-
ogy �21–23,26� assume the correspondence between the par-
tition function Z	�x ,x�� of polymer chain with ends fixed at x
and x� immersed in the volume containing the two parallel
walls and the two-point correlation function G�2��x ,x��
= ��� �x��� �x��� in the field theoretical �4 O�n�-vector model
at the formal limit n→0 in the restricted geometry:

Z	�x,x�;N,L,v0� = IL�0
2→N���� 1�x��� 1�x����n=0� . �2.6�

Here the rhs denotes the inverse Laplace transform �2→N
of the two-point correlation function for the system modeled
via the corresponding Landau-Ginzburg Hamiltonian in the
limit, where the number of components n tends to zero. N
determines the number of monomers of the polymer chain
and represents only an auxiliary parameter, the trace along
the chain and fixes its size globally. The most common pa-
rameter in polymer physics to denote the size of polymer
chains which are observable in experiments is Rg �21,22,26�:

Rg
2 = �d

2Rx
2

2
, �2.7�

where �d is a universal numerical prefactor which depends
on the dimension d of the system. For ideal polymer chains
one has �d

2= d
3 and for three dimensional case N equals Rx

2 /2.
For the chains with EVI it could be obtained within a pertur-
bation expansion �21�.

The fundamental two-point correlation function of the
free theory corresponding to Eq. �2.2� in mixed p ,z repre-
sentation has a form

G̃ij
�2��p,p�,z,z�� = �2��d−1�ij��p + p��G̃	�p,z,z�;�0,c10

,c20
,L� ,

�2.8�

where the free propagator G̃	�p ,z ,z� ;�0 ,c10
,c20

,L� of model
�2.2� is

G̃	�p,z,z�;�0,c10
,c20

,L�

=
1

2�0
���0

2 + �0�c10
+ c20

� + c10
c20

�e�0L

− ��0
2 − �0�c10

+ c20
� + c10

c20
�e−�0L�−1

����0
2 + �0�c10

+ c20
� + c10

c20
�e�0�L−�z−z���

+ ��0
2 − �0�c10

+ c20
� + c10

c20
�e−�0�L−�z−z���

+ ��0
2 + �0�c20

− c10
� − c10

c20
�e�0�L−z−z��

+ ��0
2 − �0�c20

− c10
� − c10

c20
�e−�0�L−z−z��� , �2.9�

with �0=�p2+�0
2, where p is the value of parallel momen-

tum associated with d−1 translationally invariant directions
in the system and the subscript 0 on ci0

�with i=1,2� is
introduced to avoid confusion with the later defined renor-
malized variable ci. At the confining surfaces, the two-point
correlation function �Eq. �2.8�� obeys the boundary condi-
tions:

�

�z
G̃ij

�2��p,p�,z,z���z=0 = c10
G̃ij

�2��p,p�,z = 0,z�� ,

�

�z
G̃ij

�2��p,p�,z,z���z=L = c20
G̃ij

�2��p,p�,z = L,z�� . �2.10�

In the particular cases of the above-mentioned boundary con-
ditions �Dirichlet-Dirichlet, Neumann-Neumann or Dirichlet-
Neumann� the propagator �Eq. �2.9�� reduces to the free
propagators noted in �27� �see also Appendix A�.

In the case L→� and 0�z ,z��L �or 0�z ,z��L� the
free propagator �Eq. �2.9�� reproduces the free propagator of
the semi-infinite model �see �17� and Appendix B� with the
corresponding surface at z=0 and the surface-enhancement
constant c10

�or at z=L with c20
�. Thus, for infinitely large

wall separations, the slit system decomposes into two half-
space �HS� systems.

III. THERMODYNAMIC DESCRIPTION

We consider the dilute solution of long-flexible polymer
chains within the slit and allow the exchange of polymer
coils between the slit and the reservoir. Thus the polymer
solution in the slit is in equilibrium contact with an equiva-
lent solution in the reservoir. We follow the thermodynamic
description of the problem as given in �14�. The free energy
of the interaction between the walls in such a grand canoni-
cal ensemble is defined as the difference of the free energy of
an ensemble where the separation of the walls is fixed at a
finite distance L and that where the walls are separated infi-
nitely far from each other:
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�F = − kBTN ln� Z	�L�
Z	�L → ���

= − kBTN�ln�Z	�L�
Z � − ln�Z	�L → ��

Z �� , �3.1�

where N is the total amount of polymers in the solution and
T is the temperature. Z	�L� is the partition function of one
polymer chain located in volume V containing the walls at a
distance L:

Z	�L� = 

V



V

ddxddx�Z	�x,x�� , �3.2�

with Z	�x ,x�� representing the partition function of one
polymer chain in the slit with its ends fixed at points x and
x�. For the sake of convenience we renormalized the parti-
tion functions Z	�L� and Z	�L→�� on the partition function
Z of one polymer chain in the same volume V without walls.
The total volume of the system V can be divided into two
independent subsystems Vi �inside� and Vo �outside� the slit,
respectively. It gives the possibility to expand the term
ln�Z	 /Z� in the thermodynamic limit as

1

V



Vo

ddx� Ẑo�z�

Ẑb

− 1� +
1

V



Vi

ddx� Ẑi�z�

Ẑb

− 1� , �3.3�

with Z=VẐb, Ẑb=�Vddx�Zb�x ,x��, where Zb�x ,x�� is the
partition function of one polymer chain in the unbounded

solution with fixed ends at x and x�, and Ẑo,i�z�
=�Vo,i

ddx�Z	�x ,x��.
In the thermodynamic limit �as N ,V→�� the contribution

from the first term in Eq. �3.3� and, respectively, in Eq. �3.1�
disappear because the ratio Ẑo�z� / Ẑb is independent of L.
Thus, the reduced free energy of interaction �f per unit area
A=1 of the confining walls may be written as

�f =
�F

npkBT

= L − 

Vi

ddx
Ẑi�z�

Ẑb

+ 

VHS1

ddx� ẐHS1
�z�

Ẑb

− 1�
+ 


VHS2

ddx� ẐHS2
�z�

Ẑb

− 1� , �3.4�

where np=N /V is the number density of polymer chains in
the bulk solution and

ẐHSi
�z� = 


VHS

ddx�ZHSi
�x,x�� , �3.5�

with i=1,2 and ZHSi
�x ,x�� denoting the corresponding par-

tition functions for a polymer chain in a half space with two

fixed ends at points x and x�. The functions Ẑi�z� and ẐHSi
�z�

depend only on the z coordinates perpendicular to walls. The
reduced free energy of interaction �f , according to Eq. �3.4�,
is a function of the dimension of a length and dividing it by

another relevant length scale �namely, that for the size of the
chain in bulk, e.g., Rx� yields a universal dimensionless scal-
ing function

��y� =
�f

Rx
, �3.6�

where y=L /Rx is a dimensionless scaling variable. The re-
sulting depletion force between the two walls induced by the
polymer solution is denoted as

��y� = −
d��f�

dL
= −

d��y�
dy

. �3.7�

According to Eqs. �3.1� and �3.4� in the thermodynamic
limit, the total grand canonical free energy � of the polymer
solution within the slit is

� = − npkbTAL� , �3.8�

with

� =
1

L



0

L

dz
Ẑi�z�

Ẑb

. �3.9�

Taking into account Eqs. �3.4� and �3.8� we can write for unit
surface area A=1:

�

npkBT
= fbL + fs1

+ fs2
+ �f , �3.10�

with the reduced bulk free energy per unit volume fb=−1
and the reduced surface free energy per unit area

fsi
= 


VHSi

dz�1 −
ẐHSi

�z�

Ẑb

� . �3.11�

Further for the sake of convenience we can introduce X, the
total system susceptibility in the form

X =
1

V



V



V

ddxddx���� 1�x��� 1�x��� . �3.12�

This definition is consistent with the bulk susceptibility for
the unbounded space given as Xb=1 /m2 to all orders of

renormalized perturbation theory �e.g., �16��. Ẑb being the

inverse Laplace transform of Xb and Ẑb=1 to all orders as
well. Accordingly to Eqs. �2.6� and �3.12� we can rewrite Eq.
�3.4� in the form

�f = IL�2→Rx
2/2�L�Xb − X	� − �1 − �2� , �3.13�

where X	 denotes the total susceptibility for the slit geometry
and �i with i=1,2 give two HS contributions such that fsi
=IL�2→Rx

2/2��i�, �see Appendix B�.

IV. CORRELATION FUNCTIONS AND
RENORMALIZATION CONDITIONS

Correlation functions, which involve N� fields ��xi� at
distinct points xi�1� i�N�� in bulk, M1 fields �1�r j1

,z=0�
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��s1
�r j1

� at distinct points on the wall z=0 and M2 fields
�2�r j2

,z=L���s2
�r j2

� at distinct points on the wall z=L, and
I insertion of the bulk operator 1

2�2�Xk� at points Xk with
1�k� I, I1 insertions of the surface operator 1

2�s1

2 �Rl1
� at

points Rl1
with 1� l1� I1, and I2 insertions of the surface

operator 1
2�s2

2 �Rl2
� at points Rl2

with 1� l2� I2, have the
form �17,25�

G�N�,M1,M2,I,I1,I2���xi�,�r j1
�,�r j2

�,�Xk�,�Rl1
�,�Rl2

�� =��
i=1

N�

��xi� �
j1=1

M1

�s1
�r j1

� �
j2=1

M2

�s2
�r j2

��
k=1

I
1

2
�2�Xk��

l1=1

I1 1

2
�s1

2 �Rl1
��

l2=1

I2 1

2
�s2

2 �Rl2
�� .

�4.1�

Here, the symbol � . . . � denotes averaging with Hamiltonian
�2.2�. The free propagator of model �2.2� in the mixed p ,z
representation has form �2.9�, as was mentioned above.

Taking into account that surface fields �si
�r ji

� and surface
operators 1

2�si

2 �Ri� with i=1,2 scale with scaling dimensions
that are different from those of their bulk analogs ��x j� and
1
2�2�X j� �see �17��, the renormalized correlation functions
involving N� bulk fields and M1 surface fields on the wall
z=0 and M2 surface fields on the wall z=L, I bulk operators,
I1 and I2 surface operators can be written as

GR
�N�,M1M2,I,I1,I2��;�,v,c1,c2,L�

= Z�
−�N�+M1+M2�/2Z1

−M1/2Z2
−M2/2Z�2

I Z
�s1

2
I1 Z

�s2

2
I2

�G�N�,M1,M2,I,I1,I2��;�0,v0,c10
,c20

,L� , �4.2�

where Z�, Z1, Z2 and Z�2, Z�s1

2 , Z�s2

2 are correspondent UV-

finite �for d�4� renormalization factors. The typical bulk
and surface short-distance singularities of the correlation
functions G�N�,M1,M2� can be removed via a mass shift �0

2

=�2+��2 and surface-enhancement shifts ci0
=ci+�ci, re-

spectively �17�. The renormalizations of the mass �, the cou-
pling constant v, and the renormalization factor Z� are de-
fined by standard normalization conditions of the infinite-
volume theory �16,28–31�. In order to adsorb uv singularities
located in the vicinity of the surfaces, the surface-
enhancement shifts �ci are required. In connection with this
the new normalization conditions should be introduced. It is
obvious that in the limit L→� we should have

lim
L→�

�G̃R
�0,2,0��p;�,v,c1,c2,L��p=0� =

1

� + c1
,

lim
L→�

�G̃R
�0,0,2��p;�,v,c1,c2,L��p=0� =

1

� + c2
. �4.3�

For the renormalization factors Zi, Z�si

2 , where i=1,2 we ob-

tain, respectively,

lim
L→�

� �

�p2G̃R
�0,2,0��p;�,v,c1,c2,L��p=0� = −

1

2��� + c1�2 ,

lim
L→�

� �

�p2G̃R
�0,0,2��p;�,v,c1,c2,L��p=0� = −

1

2��� + c2�2 ,

�4.4�

and

lim
L→�

�G̃R
�0,2,0;0,1,0��p,P;�,v,c1,c2,L��p,P=0� =

1

�� + c1�2 ,

lim
L→�

�G̃R
�0,0,2;0,0,1��p,P;�,v,c1,c2,L��p,P=0� =

1

�� + c2�2 .

�4.5�

In the limit L→� all these conditions yield exactly the same
shifts �ci and renormalization factors as in the semi-infinite
case. It is intuitively clear that in the case of two inert walls
or mixed walls situated at big but finite distance L with L
�Rg such that the chain is still not deformed too much from
its original size in bulk, the shift of c0

sp→csp may depend on
the presence of the other surface and hence on the size of the
slit. So, in the case of L�Rg �or �L�1� from Eqs. �2.9� and
�4.3� we obtain conditions

lim
L��1

�G̃R
�0,2,0��p;�,v,c1,c2,L��p=0�

=
1

� + c1
�1 +

2�

� + c1

� − c2

� + c2
e−2�L + O�e−4�L�� ,

lim
L��1

�G̃R
�0,0,2��p;�,v,c1,c2,L��p=0�

=
1

� + c2
�1 +

2�

� + c2

� − c1

� + c1
e−2�L + O�e−4�L�� . �4.6�

The above-mentioned conditions �4.6� give one-loop order
corrections to the respective surface-enhancement shifts �ci
of semi-infinite theory in the case of large but finite wall
separation L. In accordance with this, for the case of mixed
walls we obtain

�c1
S−O = �c1 + ��S−O�, �4.7�

with corrections of order O�e−2�L�
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��S−O� =
�

4
� 1

�L
+ CE + ln 8 − 3 + ln �L

− e4�LEi�− 4�L��e−2�L. �4.8�

In the case when both walls are inert, the modified surface-
enhancement shifts are

�ci
S−S = �ci + ��S−S�, �4.9�

with

��S−S� = − ��S−O� − ��ln 2 −
1

2
�e−2�L. �4.10�

The above-mentioned corrections �ci are UV singular for d
=3 dimensions. They provide the singular parts of the coun-
terterms that cancel the UV singularities of the correspondent
correlation functions by analogy as it took place for semi-
infinite systems �see �17��. The above-mentioned corrections
��S−O� and ��S−S� are finite in d�4 dimensions.

V. RESULTS FOR GAUSSIAN CHAINS

Let us consider at the beginning the case of ideal polymer
chains �v0=0�. As mentioned above it corresponds to the
situation of a polymer chain under �-solvent conditions.

For general case of arbitrary c1 and c2 on the confining
walls, we obtain for the reduced free energy of interaction:

�f = − IL�2→Rx
2/2� 1

�3 ��� + c1��� + c2�e�L

− �� − c1��� − c2�e−�L�−1�4c1c2

− ���c1 + c2� + 2c1c2�e�L + ���c1 + c2� − 2c1c2�e−�L�

+
1

�3� c1

� + c1
+

c2

� + c2
�� . �5.1�

First, consider the case of Dirichlet-Dirichlet �D-D� bound-
ary conditions �2.3� on the confining surfaces. Taking the
limits c1 /m→� ,c2 /m→� yields

�D,D�y� = − 4yIL�→�2y2�−1� 1

�3/2
1

1 + e��� , �5.2�

where �=�2L2 and y=L /Rx. The result indicates that if both
c1 and c2 are positive, the depletion interaction potential is
negative and hence the walls attract each other due to the
depletion zones near repulsive walls. The inverse Laplace
transform can only be performed numerically �the plot is
shown in Fig. 1� or may be expanded for asymptotic values
of ��. The obtained results for ideal polymer chains in slit of
two repulsive walls are in agreement with previous theoreti-
cal results obtained in Ref. �14�. However, it should be men-
tioned that on plotting these functions the authors of �14�
used a rescaled variable �2Rx, which was not mentioned
there.

Now we proceed to the case of two inert walls, which
corresponds to Neumann-Neumann �N-N� boundary condi-
tions �2.4�. For the free energy of interaction we obtain

�N,N�y� = 0. �5.3�

It corresponds to the fact that ideal chains do not loose free
energy inside the slit in comparison with free chains in un-
restricted space. The entropy loss is fully regained by surface
interactions provided by two walls.

Taking the limits
c1

m →� ,
c2

m →0 in accordance with Eq.
�2.5� �Dirichlet-Neumann �D-N� boundary conditions� from
Eq. �5.1� we obtain

�D,N�y� = − 2yIL�→�2y2�−1� 1

�3/2
1

1 + e2��� . �5.4�

This result can only be evaluated numerically and is plotted
in Fig. 2. From comparison Eqs. �5.2� and �5.4� it is easily to
see that

�D,D�2y� = 2�D,N�y� . �5.5�

The obtained result is intuitively clear, because the depletion
zone is formed only near the lower wall, i.e., near the wall
with Dirichlet bc. The upper wall with Neumann bc does not
contribute at all to the induced depletion interaction. Let us
consider different asymptotic regions of y.
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FIG. 1. The functions ��y� and ��y� for two repulsive walls.
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A. Wide slits (yš1)

In the case �L�1 from Eq. �5.2� we obtain for two re-
pulsive walls:

�D,D�y� � 4y�erfc� y

�2
� −

1

y
� 2

�
exp�−

y2

2
��

− 8y�erfc��2y� −
1

y�2�
exp�− 2y2�� . �5.6�

The force �Eq. �3.7�� becomes

�D,D�y� � − 4 erfc� y
�2

� + 8 erfc��2y� . �5.7�

And for one repulsive and one inert wall we have

�D,N�y� � 4y erfc��2y� −
4

�2�
exp�− 2y2� , �5.8�

which implies

�D,N�y� � − 4 erfc��2y� . �5.9�

These approximating functions are presented in Figs. 1 and
2, respectively.

B. Narrow slits (y™1)

In the case of narrow slit �L�1 the asymptotic solution
for Eq. �5.2� reads as

�D,D�y� � −
4

�2�
+ y , �5.10�

and the force simply becomes �D,D�y��−1.
For the depletion interaction potential �Eq. �5.4�� we get

�D,N�y� � −
2

�2�
+ y . �5.11�

For the force we have again �D,N�y��−1.
These results can be understood phenomenologically. In

our units the quantities � and � are normalized to the overall
polymer density np. So, the above results simply indicate that
the force is entirely induced by free chains surrounding the
slit or, in other words, by the full bulk osmotic pressure from
the outside of the slit. No chain has remained in the slit. It is
reasonable in the case of repulsive walls in the limit of nar-
row slits. Unfortunately, the narrow slit regime is beyond the
validity of our approach in the presence of EVI as mentioned
above. But the above-mentioned arguments can be used in
order to obtain the leading contributions to the depletion ef-
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FIG. 3. The functions ��y� and ��y� for two inert walls with and without EVI. Here we introduced notations: �csemi=�ci and �ci
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fect as y→0. We can state that in the case of very narrow
slits the chains would pay a very high entropy to stay in the
slit or even enter it. It is due to the fact that the phase space
containing all possible conformations is essentially reduced
by the squeezing confinement to the size d−1

d times its origi-
nal size �for an unconfined chain�. Therefore, the ratio of
partition function of polymer chain in the slit and the free
chain partition function vanishes strongly as y→0, which
implies directly the function � in Eq. �3.9�. Setting �=0 and
using only the corresponding surface contributions and the
bulk contribution �fb=−1� in Eq. �3.10� must lead to the
same asymptotic limits in the narrow slit regime. The advan-
tage of this procedure is that no expansion is necessary and it
should be equally valid in the EVI regime.

In Figs. 1–3 the depletion interaction potential ��y� and
depletion force ��y� are plotted for all boundary conditions.

As expected, the results for mixed walls are located in be-
tween the results of two inert walls and those of two repul-
sive walls.

VI. RESULTS FOR GOOD SOLVENT

In good solvent the EVI between monomers play a crucial
role so that polymer coils occupy the bigger volume and are
less compact than in the case of ideal polymer chains. The
influence of the EVI on the depletion functions can be ob-
tained within the framework of the massive field theory ap-
proach in fixed dimensions d=3 up to one-loop order ap-
proximation of the two-point correlation functions G�2,0,0�

restricted to the slit geometry �Eq. �2.2��. The bare total sus-
ceptibility X	

bare �see Eq. �3.13�� for the slit geometry in ac-
cordance with Eqs. �3.9�, �3.12�, and �4.1� is

X	
bare��0,v0,c10

,c20
,L� =

1

L



0

L 

0

L

dzdz��G̃	�p = 0,z,z�;�0,ci0
,L�

−
n + 2

6
v0


0

L

dz�

q

G̃	�p = 0,z,z�;�0,ci0
,L�G̃	�q,z�,z�;�0,ci0

,L�G̃	�p = 0,z�,z�;�0,ci0
,L�� . �6.1�

The two HS contributions denoted by �i �see Eq. �3.13�� can
be obtained in accordance with Eq. �3.11� similarly to Eq.
�6.1� with the propagators of semi-infinite system. Some de-
tails of the calculation of these quantities for zero-loop and
one-loop orders for different surface critical points of interest
�ordinary, special� are presented in Appendix B. In order to
make the theory UV finite in renormalization-group �RG�
sense in 3�d�4 dimensions, we perform the standard mass
renormalization, the coupling constant renormalization, and
additional surface-enhancement constants renormalization.

A. Two repulsive walls

Let us first consider the case of D-D boundary conditions
�2.3� on each of two surfaces. Each surface term �fsi

, i
=1,2� contributes

fs
D =� 2

�
�1 −

ln9
8

4
�Rx. �6.2�

It should be mentioned that in the limit ci→� �where i
=1,2� surface-enhancement constants renormalization re-
duces to an additive renormalization by analogy as it took
place for the case of semi-infinite geometry �17�. After per-
forming the standard mass and the coupling constant renor-
malization and additive renormalization at zero momentum,
the correspondent function X	ren

D,D can be obtained. In order to
be concise, we do not present here the complicated form for
X	ren

D,D and just discuss the limiting cases of wide and narrow
slit regimes.

1. Wide slits (yœ1)

The massive field-theory approach at fixed dimensions d
=3 gives a rather simpler result in one-loop order than the
results obtained in �14� with the help of dimensionally regu-
larized field theory with minimal subtraction of poles in �
expansion. It should be mentioned that in �14� the wide slit
approximation was carried out as well up to the first non-
trivial order �apparently O�e−�L��. Therefore, we performed
calculations up to the next-order term �O�e−2�L�. The renor-
malized total susceptibility for the slit geometry up to one-
loop order in d=3 for polymer case n→0 in the wide slits
regime �L�1 is

X	ren
D,DL �

L

�2 −
1

�3�2 −
ln9

8

2
� +

e−�L

�3 �4 − ln
3

2
� −

e−2�L

�3

��9 − CE − 2 ln3
2

2
−

3

2�L
−

ln��L�
2

+ e�LEi�− �L�

− e3�LEi�− 3�L� +
e4�L

2
Ei�− 4�L�� . �6.3�

The exponential integral functions, denoted by Ei�x�, can be
expanded for large negative arguments as well in accordance
with �see, e.g., �32��: exEi�−x�=−1 /x+O�1 /x2�. Thus, for the
depletion interaction potential we obtain
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��y� � �4 − ln
3

2
��y erfc� y

�2
� −� 2

�
exp� y2

2
��

−
55

48y
erfc��2y� − �163

24
− ln

3

2
−

CE

2
��2y erfc��2y�

−� 2

�
exp�− 2y2�� −

y

4
IL�→1/2y2� ln �

�3/2 e−2��� . �6.4�

The comparison of the obtained results to ideal chain results
in the wide slit regime �see Fig. 1� shows that the EVI re-
duces the depletion effects for two repulsive walls.

2. Narrow slits (y™1)

Following the simple argument obtained from the discus-
sion of the exactly solvable ideal chain model, the entire slit
contribution � �Eq. �3.9�� to the reduced free energy of in-
teraction �f in Eq. �3.10� is simply set to zero, and the deple-
tion effect is only calculated from bulk and surface contribu-
tions. In this limit the depletion potential becomes

��y� � y −
2�2
��

�1 −
ln9

8

4
� , �6.5�

and the force again is unity. In Fig. 1 one can follow how the
two regimes come to match in the crossover regime y�1.
The lowest-order expansion in the case of wide slits is un-
able to show this matching. With these two approximations
we are in the position to present a rather complete picture of
the problem in comparison with the approach given in �14�.

B. One repulsive–One inert wall

This case has not been studied so far in any approach.
Since we are now dealing with an inert wall, the surface-
enhancement constant shift should be taken into account.
Again, the full result for the renormalized total susceptibility
of system within the slit X	ren has complicated form and we
here focused our discussion on the limiting cases of wide and
narrow slits only.

The surface contribution for the repulsive wall coincides
with Eq. �6.2� and for the inert wall we have

fs
N =

2 ln 2 − 1

8
� 2

�
Rx. �6.6�

1. Wide slits (yœ1)

For the total susceptibility up to O�e−2�L� order we obtain

X	ren
OS L �

L

�2 −
1

�3�1 +
2 ln4

3 − 1
2

4
� +

e−�L

�3 �2 ln 4 − ln 3 − 1

2
�

+
e−2�L

�3 �31 − 2CE

8
−

ln 3

2
−

7 ln 2

4
−

3

4�L

−
ln��L�

4
+

e�L

2
Ei�− �L� +

e4�L

4
Ei�− 4�L�

−
e3�L

2
Ei�− 3�L�� . �6.7�

In comparison with the result for ideal chains �Eq. �5.4��,
where the lowest-order term contributing to the total suscep-
tibility in the wide slit limit is of order O�e−2�L�, now the
additional term of order O�e−�L� appears.

In this case the depletion interaction potential becomes

��y� �
1

2
�ln

16

3
− 1��y erfc� y

�2
� −� 2

�
exp�−

y2

2
��

+
55

96y
erfc��2y� +

1

4
�229

12
− CE − ln 1152�

��2y erfc��2y� −� 2

�
exp�− 2y2��

+
y

8
IL�→1/2y2� ln �

�3/2 e−2��� . �6.8�

Figure 2 presents the depletion interaction potential ��y� and
the force ��y�. It clearly indicates that in comparison with
ideal chains the depletion effect is stronger in the regime of
wide slits.

2. Narrow slits (y™1)

Following again the thermodynamic argument, � is set to
zero and only bulk and surface contributions are taken into
account in Eq. �3.10�. One gets

��y� � y − �1 +
2 ln4

3 − 1
2

4
�� 2

�
, �6.9�

which is also slightly below the depletion potential in com-
parison with the case of ideal chains �see Fig. 2�. The deple-
tion force is unity.

Both approximations for wide, as well as for narrow slits
suggest the depletion effect to be stronger in the case of
excluded volume interactions than for ideal polymer chains
�see Fig. 2�.

C. Two inert walls

In order to obtain the renormalized total susceptibility for
a system confined by two parallel inert walls we have to
apply the surface renormalization scheme suggested by �17�
for both surfaces at their surface critical point ci0

sp. Starting
from Eq. �6.1� we obtain for the renormalized total suscep-
tibility:

X	ren
SS L =

L

�2 −
1

2�3�ln 2 −
1

2
− ln�1 − e−2�L�� . �6.10�

The surface contribution has already been presented in Eq.
�6.6�. Let us consider the asymptotic expansion for wide slits
�L�1. Taking into account the surface �Eq. �6.6�� and bulk
contributions, the result for the depletion interaction poten-
tial becomes

��y� �
1

�2�
e−2y2

− y erfc��2y� . �6.11�

This function and its derivative for the force are plotted in
Fig. 3.

POLYMER CHAINS IN CONFINED GEOMETRIES:… PHYSICAL REVIEW E 80, 041802 �2009�

041802-9



It is obvious that only the wide slit approximation can be
applied here since the usual argument for the narrow slit
approximation is no more valid and � does not necessarily
vanish.

Interestingly, the depletion force turns out to be positive
and the walls are repelled from each other. It means that
polymer chains like to stay in between the slit rather than
leave it. Thus, the chains gain enough energy from attractive
interactions on the walls, which forces them to exert their
loss of entropy �due to the confinement� onto walls instead of
leaving the slit.

It is very instructive to have a more general look on the
terms appearing in the free energy of interaction. If we now
take into account new normalization conditions for surface-
enhancement constants for slit geometry �see Eqs.
�4.6�–�4.10��, which assume that we have big, but finite wall
separation L, the �f can be written as

�f = 2IL�2→Rx
2/2��ci

S−S − �ci

�4 � − IL�2→Rx
2/2� ln�1 − e−2�L�

2�3 � .

�6.12�

Here �cS−S is the surface-enhancement constant shift for the
slit geometry which appears in the case of finite walls sepa-
ration and �ci is the surface-enhancement constant shift in
the case of infinite walls separation. In the presented ap-
proach the same renormalization of critical values c0

sp was
used and equally the same shifts to the renormalized values
were obtained. So the first term on the rhs just disappeared
on the assumption that the surface-enhancement constant
shift on one surface is not affected by the presence of the
second one.

In fact, this assumption could be doubted and an addi-
tional shift through the influence of the second wall �a cou-
pling effect between two walls� may appear. Since the inter-
action potential itself is purely local, such coupling effect can
only be mediated through chain conformations. As a result,
the number density of monomers near the walls might differ
in comparison with a semi-infinite constraint, and also the
shift of the critical point �due to excluded volume interac-
tions� can change. As already proposed in �33� this in turn
would require a different renormalization scheme for the sur-
face critical point, where this coupling effect is to be taken
into account. The results of calculations for a slightly modi-

fied surface renormalization scheme which takes into ac-
count the finite surface separation L are introduced at Appen-
dix C and are presented in Fig. 3 as well. It should be
mentioned that in accordance with this it will be useful to
extend in the future the present calculations up to the next
two-loop order approximation of renormalized perturbation
theory.

VII. COMPARISON TO PREVIOUS WORK

A. Theoretical approach

As was mentioned in the introduction, a remarkable
progress in the investigation of the influence of EVI on the
depletion interaction and depletion force between two repul-
sive walls was achieved by �13,14� via using the dimension-
ally regularized continuum version of the field theory with
minimal subtraction of poles in �=4−d, where d is dimen-
sionality of space. Figure 4 presents the comparison of our
results obtained within the framework of massive field
theory at fixed dimensions d=3 for the case of two repulsive
walls and results obtained in �14�.

The results obtained within the framework of both ana-
lytical methods are in quantitative agreement. But one notes
that the reduction in the depletion effect due to excluded
volume interactions is weaker within the massive field ap-
proach as compared to an � expansion in one-loop order. It
should be noted that we extended our results up to the next
e−2�L order. This allowed us to obtain good matching with
approximating results in the narrow slit limit �see Figs. 1 and
2 for ��y��.

B. Simulations

One of the possibilities to test the reliability of the ob-
tained analytical results is to compare them with the results
obtained by Monte Carlo simulations. In this section we
compare our results with the results of MC calculations ob-
tained by �19,20� for the single polymer chain trapped inside
the slit of two repulsive walls, which corresponds to a ca-
nonical ensemble. The canonical free energy can be obtained
via the Legendre transform from the grand canonical one in
the thermodynamic limit �N ,V→�� in the form

F�Nl� = ����Nl�� + ��Nl�Nl, �7.1�

with � from Eq. �3.8�.
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FIG. 4. The functions ��y� and ��y� for two repulsive walls in comparison to �14�.
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Thus, the reduced canonical force for the one polymer
chain Nl=1 can be written as its dimensionless counterpart:

KL

kbT
=

1

�

d

dL
�L�� . �7.2�

It should be mentioned that both Monte Carlo algorithms
�see �19,20�� differ very much from each other in the range
of analyzed slit widths and chain lengths of the simulated
polymers. In �19� an off-lattice bead and spring model for the
self-avoiding polymer chain in d=3 dimensions trapped be-
tween two parallel repulsive walls at distance D has been
studied by Monte Carlo methods using chain lengths up to
N�512 �number of monomers in the chain� and distances D
from 4 to 32 �in units of the maximum spring extension�. It
was stated that the total force K exerted on the walls is re-
pulsive and diverges for the case of narrow slit as

KL

kbT
� � L

Rg
�−1/�

, �7.3�

where Rg is the radius of gyration of the polymer chain in
unrestricted geometry.

In Ref. �20� the lattice Monte Carlo algorithm on a regular
cubic lattice in three dimensions, with D lattice units in z
direction and impenetrable boundaries was applied. The
other directions obeyed periodic boundary conditions. The
proposed MC simulations �20� are based on the analytical
result obtained by �13� for the scaling behavior of partition
function for a chain confined to the slit geometry of width D:

ZN�D� 
 ��� + aD−1/��−NN�2−1D��2−�3�/�, �7.4�

for N ,D→�, but D�N�, where �� is the critical fugacity
per monomer and �d is the universal exponent �see Eq. �2.1��
dependent on the space dimension d and the parameter a is a
universal amplitude. The critical fugacity means the aver-
aged inverse number of possible steps at each site. In �20�
universal amplitudes and exponents for the partition function
of the chain trapped in the slit with respect to that of a free
chain have been obtained through analyzing the statistics for
different D and number of chain monomers up to N
�80 000. Also both cases of ideal chains �modeled as a
simple random walk �RW�� and chains with excluded vol-
ume interactions �modeled via self-avoiding walks �SAWs��
have been studied. In the case of an ordinary random walk
on a regular cubic lattice in three dimensions one has obvi-
ously ��= 1

6 and �d=3=1. In the case of SAW on such a
lattice it is clear that at least ���

1
5 . From Eq. �7.4� one may

obtain the force exerted onto the walls in units of kBT as

K̃ = kBT
d

dD
ln�ZN�D�� . �7.5�

In the limit �D�N�, N ,D→�� K̃ becomes

K̃ = kBT� Na

���

D−1−1/�� . �7.6�

One should note that all functions here are in terms of di-
mensionless length scales, the number of lattice sites �D and
N�. In order to compare with our results, it must be translated

into terms of L and Rg. Apparently L=uD, with u denoting
the lattice spacing, and the reduced dimensionless force
reads as

k =
K̃D

kBT
=

a

�3��
� 6

�d
2�1/2�3� L

Rg
�−1/�3

, �7.7�

where we take into account the general relation �e.g., �21��:

Rg
2 = �3

2b2N2�3

6
�7.8�

in d=3 dimensions. Parameter b denotes the �effective� seg-
ment length of the polymer model under consideration. In
the case of RW and SAW on the cubic lattice one has simply
b=u because the segment length in these models is naturally
provided by the lattice parameter u. In �20� the universal
amplitude a for the case of ideal chains was found as a
�0.2741, which is very close to the exact value, computed
analytically in �13�, of a=�2 /36. Taking into account that for
the ideal chain �=0.5, �d=1, and ��= 1

6 the force becomes

kid = 2�2� L

Rg
�−2

. �7.9�

In Fig. 5 this asymptotic behavior for narrow slits is clearly
recovered by our results for ideal chains, where the narrow
slit limit is valid. By contrast, for a SAW in Ref. �20� the
value a�0.448 was suggested. Taking into account the val-
ues for ��0.588, �3�0.958 �21�, and ���0.2135 the re-
duced force can be written as

ksaw � 16.95� L

Rg
�−1.7

. �7.10�

Result �7.10� is presented in Fig. 5 in its regime of validity
and compared to our theoretical results for a trapped chain
with EVI, which are valid for the wide slit regime. As it
easily can be seen from Fig. 5, result �7.10� corresponds very
well to our predictions in the wide slit limit. Also, in Fig. 5
the results obtained by the authors of Ref. �19� are plotted
and one notes a qualitative agreement with our predictions.

1

10

0.5 1 5

LK
/(

k b
T

)

L/Rg

Ideal chain
EVI [massive]
RW (MC) [20]

SAW (MC) [20]
SAW (MC) [19]

FIG. 5. Comparison of our theoretical results with Monte Carlo
simulations for a trapped chain between two repulsive walls. The
plots Ideal chain �exact� and EVI �wide slit� represent the results of
our calculations. RW �MC� and the first SAW �MC� are due to the
estimated asymptotic behavior in the narrow slit limit by �20� for
random walks and self avoiding walks. The second SAW �MC� are
the results obtained by �19�.
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One of the possible reasons for remaining deviations with the
results of Ref. �19� is that the chain in the MC simulation is
too short in order to compare with the results of the field-
theoretical RG group approach. It should be noted that at the
moment no simulations concerning two inert walls or one
inert–one repulsive wall exist.

C. Experiment

In Ref. �5� an experimental study of the depletion effect
between a spherical colloidal particle immersed in the dilute
solution of nonionic linear polymer chains and the wall of
the container through total internal reflection microscopy
was analyzed. Using the Derjaguin �7� approximation we
could compare our theoretical results with experimental data
in the case when the radius of the spherical colloid particle R
is much larger than the radius of gyration Rg and the closest
distance a between the particle and the surface. The devia-
tion of the experimental setup from the presented theoretical
approach is connected with the fact that the second wall is
not plane but curved. Summing up, the depletion potential
per volume unit for the case of two plane surfaces in the
margins of the curved volume allows us to estimate the
depletion effects in the case of a sphere and a wall. In the
experiment by �5� the radius of gyration was measured as
Rg=0.101 �m and the colloidal particle was reported to
have the radius R=1.5 �m. A straightforward application of
the Derjaguin �7� approximation yields

�depl�a�
npkbT

= 2�Rx
2


a/Rx

�a+R�/Rx

dy�R + a − Rxy���y� ,

�7.11�

with a as the minimal distance between the sphere and the
wall. Since in the range of y the last two terms in the paren-
thesis are much smaller in comparison with the first one, we
can assume that

�depl�a�
npkbT

� 2�RRx
2


a/Rx

�

dy��y� . �7.12�

The experimental data in comparison with our theoretical
prediction are plotted in Fig. 6. It should be mentioned that
our results obtained within the framework of the massive
field theory approach are situated slightly closer to the ex-
perimental data than previous theoretical results obtained
within the framework of the dimensionally regularized con-
tinuum version of the field theory with minimal subtraction
of poles in �=4−d �14�. Unfortunately, this shift is not
enough in order to obtain quantitative agreement with the
experimental data. But the obtained theoretical curves in Fig.
6 are in qualitative agreement with the experimental data.
The quantitative discrepancy can be removed if we use the
radius of gyration as adjusting parameter by analogy as it
was done in �14�. On the other hand, this indicates the im-
portance of further theoretical investigations of the depletion
interaction potential and the depletion force in the crossover
region from wide to narrow slit.

VIII. CONCLUSIONS

Using the massive field theory approach directly at fixed
dimensions d=3 we calculated the depletion interaction po-
tential and the depletion force between two repulsive, two
inert, and one repulsive and one inert walls confining the
dilute solution of long flexible polymer chains. The obtained
calculations for all cases of polymer-surface interactions
were performed for the ideal chain and the real polymer
chain with EVI in the wide slit regime. Besides, we used
some assumptions which allowed us to estimate the deple-
tion interaction potential in the region of narrow slit. Our
results have been obtained up to the next e−2�L order in com-
parison with the results of � expansion �14�. Our investiga-
tions include the modification of renormalization scheme for
the case of two inert walls �or mixed walls� situated on big
but finite distance L with L�Rg such that the polymer chain
is still not deformed too much from its original size in the
bulk. In this respect it will be useful to extend in the future
the present calculations up to the next two-loop order of
renormalized perturbation theory. The obtained results indi-
cate that the reduction in the depletion effect due to EVI is
weaker within the massive field theory approach as com-
pared to the dimensionally regularized continuum version of
the field theory with minimal subtraction of poles in �=4
−d �14�. We found very good agreement with Monte Carlo
simulation data �19,20� for the case of two repulsive walls.
Taking into account the Derjaguin approximation we ob-
tained good qualitative agreement with the experimental data
�5� for the depletion potential between the spherical colloidal
particle of big radius and repulsive wall. From the compari-
son of obtained theoretical results and experimental data we
can see that the results obtained within the framework of the
massive field theory are situated slightly closer to experi-
mental data. But this shift is not enough in order to obtain
good quantitative agreement with the experiment. One of the
possible ways to find a good agreement could be connected
with further theoretical investigation of crossover region
from wide to narrow slit and taking into account additional
corrections to the Derjaguin approximation.

We gratefully acknowledge fruitful discussions with H.W.
Diehl. This work in part was supported by grant from the
Alexander von Humboldt Foundation �Z.U.�.
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APPENDIX A: THE FREE PROPAGATORS FOR
DIFFERENT BOUNDARY CONDITIONS

In the case of Dirichlet-Dirichlet boundary conditions
c1 /m→� and c2 /m→� the free propagator in the slit geom-
etry has a form

G̃	
D,D�p,z,z�;�0,L� =

1

2�
�e�L − e−�L�−1�e��L−�z−z���

+ e−��L−�z−z��� − e��L−z−z�� − e−��L−z−z��� ,

�A1�

and the corresponding half-space Dirichlet propagator is

G̃HS
D �p,z,z�;�0� =

1

2�
�e−��z−z�� − e−��z+z��� . �A2�

In the case of Neumann-Neumann boundary conditions
c1 /m→0 and c2 /m→0 the free propagator in the slit geom-
etry is written as

G̃	
N,N�p,z,z�;�0,L� =

1

2�
�e�L − e−�L�−1�e��L−�z−z���

+ e−��L−�z−z��� + e��L−z−z�� + e−��L−z−z��� ,

�A3�

and the corresponding half-space Neumann propagator is

G̃HS
N �p,z,z�;�0� =

1

2�
�e−��z−z�� + e−��z+z��� . �A4�

The free propagator for the mixed Dirichlet-Neumann
boundary conditions c1 /m→� and c2 /m→0 in the slit ge-
ometry has a form

G̃	
D,D�p,z,z�;�0,L� =

1

2�
�e�L + e−�L�−1�e��L−�z−z���

− e−��L−�z−z��� + e−��L−z−z�� − e��L−z−z��� .

�A5�

APPENDIX B: THE SURFACE CONTRIBUTIONS

To calculate the function � defined in Eq. �3.13�, we need
the free propagator for a semi-infinite system confined by a
surface at z=0. This free full propagator has form �17�

G̃ijHS
�2� �p,p�,z,z�;�0,c0�

= �2��d−1�ij��p + p��G̃HS�p,z,z�,�0,c0� , �B1�

with

G̃HS�p,z,z�,�0,c0� ª
1

2�0
�e−�0�z−z�� +

�0 − c0

�0 + c0
e−�0�z+z��� ,

�B2�

where �0=�p2+�0
2.

In the zero-loop order we have

�i =
1

�3

ci

� + ci
. �B3�

In one-loop order the calculation for Dirichlet boundary con-
ditions on the surface �or c

m →�� yields after renormalization
in fixed dimensions d=3

�D =
1

�3�1 −
n + 2

n + 8
ṽ ln

9

8
� . �B4�

And for Neumann boundary conditions �c=0� after renor-
malization we obtain

�N =
ṽ

�3�ln 2 −
1

2
�n + 2

n + 8
, �B5�

where we introduced rescaled renormalized coupling con-
stant ṽ in the form ṽ= �n+8�

6
���/2�
�4��d/2 v. The correspondent fixed

point in one-loop order approximation is ṽ�=1.

APPENDIX C: THE CASE OF FINITE SLIT SEPARATION
FOR TWO INERT WALLS

Taking into account the new �ci
S−S �see Eq. �4.9�� we can

calculate �f in accordance with Eq. �6.12� for the case of big
but finite slit separation L. We obtain

�f � IL�2→Rx
2/2�2��S−S�

�4 +
e−2�L

2�3 � . �C1�

After substitution of ��S−S� from Eq. �4.10� the result for �f
is

�f � − IL�2→Rx
2/2�� 1

�L
+ CE + 7 ln 2 – 6 + ln �L

− e4�LEi�− 4�L�� e−2�L

2�3 � . �C2�

If we carry out the inverse Laplace transform, the result for
��y� in the wide slit limit is

��y� � −
CE + 7 ln 2 – 7

2
�� 2

�
e−2y2

− 2y erfc��2y��
−

1

4y
erfc��2y� −

y

4
IL�→1/2y2� e−2��

�3/2 ln��
+

y

2
IL�→1/2y2� e2��

�3/2 Ei�− 4���� . �C3�

In contrast to Eq. �6.11�, this expression is indeed negative.
Thus, if we perform calculations for the depletion interaction
potential and the depletion force including big but finite slit
separation L we obtain that force in the case of two inert
walls changes character and becomes attractive. In Fig. 3 the
depletion interaction potential and the depletion force ob-
tained in the framework of this alternative renormalization
scheme with �cslit are plotted in comparison with the results
obtained via the original renormalization using �csemi. Here
we introduced for convenience the following notations:
�csemi=�ci and �ci

S−S=�cslit with i=1,2.
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